Leçon 151 - Dimension d'un espace vectoriel (cas de la dimension finie). Rang. Exemples et applications.

Cadre: E est un K-ev.

1. Théorie de la dimension. —

- 1. Familles génératrices, familles libres, bases.
 - Def : Une famille $(x_i)_i$ d'éléments de E est libre si la seule combinaison linéaire d'éléments de la famille qui est nulle est la combinaison linéaire $\lambda_i = 0$. Elle est génératrice si tout élément de E s'écrit comme combinaison linéaire des $(x_i)_i$. Elle est une base de E si elle est libre et génératrice.
 - Pro : Toute sous-famille d'une famille libre est libre. Toute sur-famille d'une famille génératrice est génératrice.
 - Ex : Base canonique de \mathbb{R}^3 . $\{(1,0,0),(1,1,0),(0,1,0)\}$ ni libre ni génératrice de \mathbb{R}^3 .
 - Pro : Une famille $(x_i)_i$ est une base ssi elle est libre maximale pour l'inclusion ssi elle est génératrice minimale pour l'inclusion.

2. Espaces vectoriels de dimension finie. —

- Def : E est dit de dimension finie s'il admet une base de cardinal fini. On dit qu'il
 est de dimension infinie sinon. On suppose à partir de maintenant que E est de
 dimension finie.
- Ex: $K^n, K_n[X], M_n(K), M_{n,m}(K)$ sont des espaces vectoriels de dimension finie.
- Pro : Si G est une famille génératrice et $L\subset G$ est libre, alors il existe $L\subset B\subset G$ telle que B est une base.
- App : Théorème de la base incomplète : Toute famille libre de E peut être complétée en une base de E.
- $-\ {\rm App}$: De toute famille génératrice de E on peut extraire une base de E.
- Pro : Si dim(E) = n, alors toutes les bases de E sont de cardinal n. Une famille libre/génératrice de E de cardinal n est une base de E.
- Def : Si E possède une base de cardinal n, on note alors dim(E) = n la dimension de E comme K-ev.
- Ex: Pour $a, b \in \mathbb{R}^*$, $\{(u_n)_n \in \mathbb{R}^n \text{ tq } u_{n+2} = au_{n+1} + bu_n\}$ est un \mathbb{R} -ev de dimension 2.
- $\{f \in C^1(\mathbb{R}) \text{ tq } f'(t) = a.f(t) \forall t\} \text{ est un } \mathbb{R}\text{-ev de dimension } 1.$
- Ex : Pour E,F de dimension finie, $dim(E \times F) = dim(E) + dim(F)$.

3. Sous-espaces vectoriels. —

- Pro : Soit F un s-ev de E. Alors F est de dimension finie, et on a $dim(F) \leq dim(E)$, avec égalité ssi F = E.
- Formule de Grassman : Soient F,G deux s-ev de E. On a : $dim(F+G) = dim(F) + dim(G) dim(F \cap G)$.

- Def : Pour E_i des s-ev de E, on dit que E est somme directe des E_i , notée $E = \bigoplus_i E_i$, si $\begin{cases} E_i \cap (E_1 + \ldots + E_{i-1} + E_{i+1} + \ldots + E_r) = \{0\} \\ E = E_1 + \ldots + E_r \end{cases}$.
- Def : Pour F un s-ev de E, un s-ev G de E tel que $E=F\oplus G$ est appelé supplémentaire de F dans G.
- Rem : Pour $E = \bigoplus_i E_i$, on a $dim(E) = dim(E_1) + ... + dim(E_r)$.
- Pro : Soient B_1, B_2 des bases de F,G. F et G sont en somme directe ssi (B_1, B_2) est une base de E.
- Pro : Tout s-ev F de E admet un supplémentaire, et les supplémentaires de F sont tous de même dimension.
- Ex : Un supplémentaire de $S_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ est $A_n(\mathbb{R})$.
- 4. Dimension et applications linéaires.
 - Pro : L'image d'une famille libre/génératrice par une application linéaire injective/surjective reste une famille libre/génératrice.
 - Pro : Deux espaces vectoriels sont isomorphes ssi ils ont même dimension.
 - Pro : dim(L(E, F)) = dim(E)dim(F).

2. Rang et applications linéaires. —

- 1. Définition et théorème du rang.
 - Def : Pour $f \in L(E, F)$, on définit rg(f) := dim(Im(f)). Pour $(e_i)_i$ une famille de vecteurs de E, on définit $rg((e_i)_i) := dim(Vect((e_i)_i))$. Pour $M \in M_{n,m}(K)$, on définit $rg(M) := dim(Vect((c_i)))$, où c_i sont les vecteurs colonnes de M dans K^n .
 - Pro : Pour $g \in L(E, F)$ un isomorphisme, on a $rg(f \circ g) = rg(f)$ et $rg((g(e_i))_i) = rg((e_i)_i)$.
 - Pro : Pour B une base de E, rg(f) = rg(Mat(f, B)).
 - App : Si M et M' sont équivalentes, alors rg(M) = rg(M').
 - Théorème du rang : Pour $f \in L(E,F)$, rg(f) + dim(Ker(f)) = dim(E).
 - App : $M \in M_n(K)$ est inversible ssi rg(M) = n.
 - Ex : Si p est un projecteur, on a $E = Ker(p) \oplus Im(p)$.
 - **Dev** : Théorème de Brauer : Soit \mathbb{K} un corps de caractéristique quelconque, $n \ge 1$, et $\sigma, \sigma' \in \Sigma_n$.
 - Alors σ et σ' sont conjuguées si et seulement si leurs matrices de permutation $T_{\sigma}, T_{\sigma'}$ sont semblables dans $Gl_n(\mathbb{K})$.
 - App: En dimension finie, $f \in End(E)$ est injectif ssi f est surjectif ssi f est bijectf.
 - Ex : Pour $a_0,...,a_n \in K$ distincts, $P \in K_n[X] \mapsto (P(a_0),...,P(a_n)) \in K^{n+1}$ est un isomorphisme. Les antécédents de la base canonique de K^{n+1} sont les polynômes interpolateurs de Lagrange en les a_i . Ils forment ainsi une base de $K_n[X]$.
 - Contre-ex : $P \in K[X] \mapsto P' \in K[X]$ est surjectif non injectif.
- 2. Caractérisation et calcul effectif du rang. —

- Pro : Les opérations élémentaires sur les lignes et les colonnes, ainsi que les permutations de lignes/colonnes ne changent pas le rang de M.
 - On peut ainsi utiliser le Pivot de Gauss pour réduire M par équivalence à une matrice échelonée, dont le rang est égal au nombres d'échelons non-nuls.
- Pro : Toute matrice $M \in M_{n,m}(K)$ de rang r est équivalente à J_r .
- App : $rg(A) = rg(A^t)$. Le rang d'une matrice A est ainsi aussi la dimension du s-ev engendré par ses vecteurs ligne.
- Cor: Deux matrices de $M_{n,m}(K)$ sont équivalentes ssi elles ont même rang.
- Pro : Le rang d'une matrice M est le plus grand entier $0 \le r \le n$ tel qu'il existe une matrice extraite de taille $r \times r$ de M qui soit inversible (de déterminant non-nul).
- App : On peut ainsi déterminer rg(M) en calculant des déterminants de matrices carrées extraites de M.

3. Formes linéaires. —

- Def : Une forme linéaire sur E est une application linéaire $f \in L(E, K)$. On appelle espace dual de E l'espace L(E, K), noté E'.
- Ex : Pour $f \in \mathbb{R}^n \to \mathbb{R}$ dérivable, $D_x(f)(.)$ est une forme linéaire sur \mathbb{R}^n .
- Pro : dim(E') = dim(E).
- Ex : $M \mapsto Tr(M)$ est une forme linéaire. Son noyau est un hyperplan de dimension $(n^2 1)$, dont un supplémentaire est $Vect(E_{1,1})$.
- Def : Pour $A \subset E$, on définit l'orthogonal de A dans E' par $A^{\perp} := \{ f \in E' \text{ tq } f(x) = 0 \forall x \in A \}.$
 - Pour $B\subset E'$, on définit l'orthogonal de B dans E par $B^\circ:=\{x\in E \text{ tq } f(x)=0\forall f\in B\}.$
- Thm : Soit F un s-ev de E et G un s-ev de E'. On a :
 - $dim(F) + dim(F^{\perp}) = dim(E)$ et $(F^{\perp})^{\circ} = F$.
 - $dim(G) + dim(G^{\circ}) = dim(E')$ et $(G^{\circ})^{\perp} = G$.

3. Extensions de corps. —

- Def : Une extention de corps de K est la donnée d'un corps L et d'un morphisme $i: K \to L$. On la désigne par L/K.
 - On identifie K à i(K) afin de considérer K comme un sous-corps de L.
- Def : Pour E un L-ev, on note $dim_L(E)$ la dimension de E comme L-ev, et $dim_K(E)$ la dimension de E comme K-ev.
- Def : Si L est un K-ev de dimension finie, on dit que l'extension est finie, et on appelle degré de l'extension l'entier $[L:K] := dim_K(L)$.
- Ex : Pour $P \in K[X]$ irréductible, K[X]/(P) est une extension finie de K de degré deq(P).
- Théorème de la base télescopique : Pour M/L et L/K des extensions de corps, on a :
 - [M:K] = [M:L].[L:K].
- Cor : Pour L/K une extension finie. E un L-ev, $dim_K(E) = dim_L(E).[L:K]$

- Ex : $M_n(\mathbb{C})$ est un \mathbb{R} -ev de dimension $2n^2$. $[Q(i, \sqrt[3]{2}, \sqrt[5]{9}, \mathbb{O}] = 30$
- Pro : (Invariance par extension des scalaires) Soit L une extension de corps de K, et $A \in M_n(K) \subset M_n(L)$. Alors $rg_K(A) = rg_L(A)$.
 - Ainsi, le rang d'un système linéaire à coefficients dans K est invariant par passage à une extension de corps de K.
- **Dev**: Soit \mathbb{K} un corps, $n \ge 1$ et $A \in M_n(\mathbb{K})$. On note $C(A) := \{M \in M_n(\mathbb{K}) \text{ tq } AM = MA\}$ le commutant de A. Alors $C(A) = \mathbb{K}[A]$ ssi $\mu_A = \chi_A$.
- Def : Soit L/K. $x \in L$ est dit algébrique sur K ssi il existe $P \in K[X]$ tel que P(x) = 0. L est dite algébrique sur K ssi tous ses éléments sont algébriques.
- Thm : Toute extension de corps finie de K est algébrique sur K.

4. Dimension finie en analyse et en géométrie. —

- Théorème de Riesz : Soit E un espace vectoriel normé. Les fermés bornés de E sont compacts ssi E est de dimension finie.
- Thm: Soit E un evn de dim finie et F un evn. Alors toute $f \in L(E, F)$ est continue.
- Pro : Les s-ev de dimension finie d'un evn sont fermés.

Références

Grifone : Famille génératrice/libre/base, exemples, sous-famille/sur-famille, conditions pour être une base. Ev de dim finie, exemples, extraction de base d'une famille génératrice, Th de la base incomplète, dim(E), une famille libre/géné de n éléments est une base, dimension de $E \times F$, exemples. Dim d'un s-ev, formule de Grassman, def somme directe, propriété, supplémentaire, exemple, propriété. Image d'une famille libre/géné par une appli inj/surj, $E \simeq F$ ssi ils ont même dim, $\dim((L(E,F)))$, exemples. Rang de f, de $(e_i)_i$, de M, invariance par composition par un isom, Th du Rang, rang de matrices équivalentes, interpolateurs de Lagrange, inj ssi surj ssi bij en dim finie, contre-ex $P \mapsto P'$, exemples. Formes linéaires, dual, orthogonal, dimensions, $M \mapsto Tr(M)$.

Gourdon : Rang invariant par opérations élémentaires et permutations. M équiv à une J_r . $rg(M) = rg(M^t)$, équivalentes ssi même rang, pivot de Gauss, rang via le det des matrices extraites, autre méthode de calcul du rang, Cramer.

Perrin : Extensions de corps, degré fini, Th de la base télescopique, élément algébrique, exemple.

FGN (Algèbre 2) : Invariance par extension des scalaires, Dimension du commutant.(Dev) Sans Ref : Th de Brauer.(Dev)

May 31, 2017

Vidal Agniel, École normale supérieure de Rennes